
Theory of physical aging in polymer glasses

Kang Chen and Kenneth S. Schweizer*
Department of Materials Science and Frederick Seitz Materials Research Laboratory, University of Illinois, 1304 West Green Street,

Urbana, Illinois 61801, USA
�Received 10 January 2008; revised manuscript received 13 August 2008; published 18 September 2008�

A statistical segment scale theory for the physical aging of polymer glasses is proposed and applied. The
approach is based on a nonlinear stochastic Langevin equation of motion and the concept of an effective free
energy which quantifies temporary localization, collective barriers, and the activated segment hopping process.
The key collective structural variable that plays the role of the dynamic order parameter for aging is the
experimentally measurable nanometer and longer wavelength amplitude of density fluctuations, S0. The degree
of local cooperativity, and the bare activation energy of the high-temperature Arrhenius process, are determined
in the molten state by utilizing experimental measurements of the glass temperature and dynamic crossover
time, respectively. A first-order kinetic equation with a time varying rate is proposed for the temporal evolution
of S0 which is self-consistently and nonlinearly coupled with the mean segmental relaxation time. The theory
has been applied to study physical aging of the � relaxation time, shear relaxation modulus, amplitude of
density fluctuations, cohesive energy, absolute yield stress, and fictive temperature of polymethylmethacrylate
and other glasses over a range of temperatures. Temperature-dependent logarithmic and effective power-law
aging is predicted at intermediate times. Time-aging time superposition is found for the mechanical relaxation
function. A strongly asymmetric aging response is predicted for up and down temperature jump experiments.
Comparison of the approach with the classic phenomenological model is presented.
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I. INTRODUCTION

The ultraslow, time-dependent dynamics of glasses is a
challenging problem of intense scientific and technological
interest for a broad range of amorphous materials, from met-
als to polymers to colloids �1�. Polymer glasses are one of
the most studied classes of disordered solids due to their
widespread use as plastics �2�. Upon a thermal quench from
the equilibrated cold melt a complex phenomenon known
as physical aging occurs. All material properties become
time dependent, and there are both universal and system-
specific aspects to the polymer aging process �2,3�. Thermo-
dynamiclike properties, such as the volume and enthalpy,
decrease with time, while mechanical properties, such as
the shear modulus and yield stress, increase with time. To a
first approximation the intermediate time evolution is loga-
rithmic, with a temperature- and property-dependent slope.
The � relaxation time follows power-law aging, with a
temperature-dependent effective exponent �2�. Equilibration
is often not experimentally accessible since relaxation times
grow explosively as temperature decreases by a small
amount. The usage temperatures of polymer glasses are not
very far below the glass transition temperature, Tg, and hence
the physical aging problem is of great practical relevance �2�.

The approach to thermal equilibrium is generally “asym-
metric” in the sense of depending on whether the aging pro-
cess corresponds to an up or down temperature jump �4,5�.
The question of a property dependence of the equilibration
time has been controversial. Recent work suggests essen-
tially identical equilibration times for the volume, enthalpy,
and mechanical properties �5,6�. This argues that, to a first

approximation, a single generic molecular process, the � or
structural relaxation, controls all observables �1�.

Due to the complexity of the glassy dynamics problem,
the vast majority of theories for physical aging are phenom-
enological and characterized by many adjustable fit param-
eters of often unclear physical significance �7,8�. Perhaps the
most famous in the context of polymer glasses is the Tool-
Narayanaswamy-Moynihan �TNM� model �9�, which can
provide good fits of some experimental measurements. An
exception to the phenomenological aspect is the recent work
of Lubchenko and Wolynes �10� who have generalized the
modern entropy-crisis mean-field approach, the “random
first-order phase transition” �RFOT� theory �11�, to address
the physical aging of polymers. The RFOT analysis has pro-
vided microscopic insight to the prior phenomenological ap-
proaches, and is consistent with established connections be-
tween the dynamic fragility and the so-called nonlinearity
parameter.

Computer simulations of the aging of glassy polymers
have been recently performed �12,13�. A key finding is that
the consequences of aging for macroscopic quantities �e.g.,
creep compliance� are consistent with microscopic dynamics,
e.g., segmental mean-square displacement or incoherent dy-
namic structure factor on the cage scale �13�. This is signifi-
cant since creep involves collective mechanical and struc-
tural relaxation, but nevertheless is closely correlated with
the conceptually much simpler self-dynamics of single seg-
ments. Moreover, aging processes appear to be controlled by
elementary activated motions on a relatively small length
scale, a feature that provides the foundation for our theoret-
ical approach to the problem.

Recently, Saltzman and Schweizer have constructed and
applied a force level theory for activated barrier hopping
segmental dynamics in equilibrated cold polymer melts
�14,15�. The approach was generalized to the nonequilibrium*kschweiz@uiuc.edu
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glass state in the absence of aging by the present authors
�16�. In a recent paper the extension of this theory to treat
physical aging was reported �17�, and encouraging compari-
sons to experiment were demonstrated. The goal of the
present paper is to present a detailed account and application
of our theory of polymer physical aging. Features not previ-
ously addressed include the aging of the enthalpy, shear elas-
tic modulus and yield stress, the role of nonexponential re-
laxation, the asymmetry between up and down temperature
jump experiments, fictive temperature, time-aging time su-
perposition of stress relaxation, and consideration of alterna-
tive formulations of the nonequilibrium equation of motion
for the primary structural variable.

Section II summarizes the key elements of the theory for
quiescent melts and glasses. A discussion of the mapping
from the atomistic to segment level is given in Appendix A.
The aging theory is described in Sec. III, and a statistical
mechanical motivation is presented in Appendix B. Compari-
son of the essential elements of the approach to a popular
phenomenological model is the subject of Appendix C. Sec-
tion IV presents model calculations for a wide range of phe-
nomena. An alternative version of the theory is given in Sec.
V and its consequences briefly explored. Section VI presents
quantitative comparisons of the theory with measurements of
various properties of polymethymethacrylate �PMMA� glass.
The paper concludes in Sec. VII with a discussion.

II. THEORETICAL BACKGROUND

Our theory for physical aging is built on work discussed
in depth previously for quiescent supercooled polymer melts
and glasses �14–17�. In this section the key elements are
summarized.

A. Equilibrium cold melt

An atomistic, first principles theoretical description of the
dynamics of polymer melts is intractable. Hence, in the spirit
of essentially all theories of polymer dynamics �18�, the melt
is treated as a liquid of lightly coarse-grained “statistical seg-
ments” of size �. To a first approximation the dynamical
consequences of chain connectivity beyond the segment
scale are ignored. This simplification is globally justified
since glassy dynamics becomes chain length independent for
long polymers �19�. Of course, material-specific local chain
structure �backbone stiffness, monomer shape� is quantita-
tively important, but is very difficult to treat. Hence, we
adopt the simplest “Gaussian thread chain” model defined
entirely by the segment length and degree of polymerization,
N �14�.

The essence of the theory is a closed nonlinear stochastic
Langevin equation of motion for the instantaneous scalar dis-
placement of a segment from its initial �t=0� location, r�t�.
In the overdamped, high friction regime of interest it is given
by �14,20�

− �s
�r�t�
�t

−
�Feff�r�t��

�r�t�
+ �f�t� = 0, �1�

where the white-noise random force satisfies ��f�0��f�t��
=2kBT�s��t�, and �s is a friction constant that describes very

local, short-time irreversible dynamics. The “nonequilibrium
free energy” consists of ideal entropy and caging contribu-
tions

�Feff�r� = − 3 ln�r� −� dq

�2��3�C2�q�S�q��1 + S�q��−1

	exp�−
q2r2

6
�1 + S−1�q��	 , �2�

where C�q� is the Fourier transform of the site-site intermo-
lecular direct correlation function, S�q� is the dimensionless
collective density fluctuation structure factor, and �

�kBT�−1. The physical basis �14,15� and statistical me-
chanical derivation �20� of the theory has been discussed.
The key idea is to use time-dependent density functional
methods at the dynamical variable level, in conjunction with
a local equilibrium picture and a self-consistent approximate
relation between one and two particle dynamics. Equation
�1� can be viewed as in the spirit of model A for a noncon-
served dynamic order parameter �20,21� with the key differ-
ence that Feff is not an equilibrium free energy.

The Gaussian thread chain model has been extensively
discussed in the context of polymer integral equation theory
�22�. The idea is to coarse grain over the local Ångstrom-
scale single-chain structural and interaction potential length
scales. As described previously �14,22�, and in depth in Ap-
pendix A in the context of the dynamical theory, the struc-
tural consequences of this coarse graining are that the site-
site direct correlation function becomes wave-vector
independent, C�q�=C0, and a simple Lorentzian form for the
collective static structure factor applies, S−1�q�=S0

−1

+ �q��2 /12. Here, S0
S�q=0�=�kBT
= �−�C0�−1� �����2� is
the dimensionless compressibility, which quantifies the am-
plitude of nanometer and beyond thermal number density
fluctuations. This quantity plays the role of the primary struc-
tural variable, or dynamic order parameter, since the starting
point of the theory is the mode coupling approach based on
collective density fluctuations as the key slow variable. Since
coarse graining to the segment level involves removing de-
grees of freedom, the statistical segment length cannot be
uniquely determined. However, for Gaussian chains the in-
trapolymer equilibrium pair correlations are uniquely speci-
fied �14� by a segment of size �=�C�l, where l is the mean
backbone chemical bond length and C� is the characteristic
ratio. The dimensionless melt density, ��3, is of order unity.

As discussed previously �14,22� and in Appendix A,
coarse graining to the nanometer segmental scale results in
the removal of the wide angle �peak� scattering features in
S�q�. It is also important to appreciate that a literal q→0
approximation is not being invoked. The quantity S0 emerges
as the key variable since on the segmental scale the low
amplitude collective density fluctuations of real polymer
melts are to a very good approximation homogeneous in the
sense S�q� is constant on q�1 scales �22�.

Using the above results, simple algebra and appropriate
nondimensionalizations allow the nonequilibrium free en-
ergy to be written as �14�
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�Feff��*� =
3

2
ln��*� −

12�3

�
��

0

�

dy� y

1 + y2	2

	exp�−
y2�1 + y2�

4�*
	

� 

1

��3S0
3/2 , �3�

where y
q��S0 /12, �
3 /2r2 and �*
��2S0
2 /12. As true

for hard sphere and small molecule systems �23,24�, the in-
termolecular force �caging� contribution to the effective free
energy is controlled by “large” q��1 wave vectors. This
point is carefully explained in Appendix A. The theory is
characterized by a dimensionless “coupling constant,” �, de-
termined by experimentally measurable equilibrium quanti-
ties. Minimization of the nonequilibrium free energy with
respect to r, or dropping the thermal noise term in Eq. �1�,
yields a self-consistent localization equation for the “naïve”
mode coupling theory �MCT� ideal glass or nonergodicity
transition �25,26� which occurs at �c=8.32 and a correspond-
ing temperature Tc. Polymer integral equation theory sug-
gests a simple temperature dependence for S0 which has been
demonstrated to describe experimental data extremely well
�14�,

S0
−1/2 = − A + �B/T� , �4�

where A�0 and B is related to the melt cohesive energy and
correlates with polymer polarity. Combining Eqs. �3� and �4�,
and taking the segmental density as a material constant,
yields

Tc =
B

A + ��c��3�1/3 . �5�

If thermally driven barrier hopping is ignored, then this Tc
represents the ideal �naïve� MCT glass transition tempera-
ture. In our approach, below Tc ����c� there is a smooth
crossover to the deeply supercooled regime where collective
barriers due to segment-segment interchain forces emerge.
The nonequilibrium free energy is then characterized by a
metastable local minimum and a barrier of height FB. Nu-
merical calculations find that the barrier is extremely well
described by a critical power-law form �14�,

�FB � c�� − �c��, c  0.4, � � 1.3. �6�

Consistent with experiment, above Tc the dynamics is
treated in an Arrhenius manner corresponding to a “primi-
tive” � relaxation time �0�T�
�0 exp�� /kBT�, where �0
�10−14�1 s is a vibrational time scale and � is a material
specific local activation energy. The simplest model for the
mean hopping ��� time that smoothly bridges the normal and
supercooled regimes is employed �14,15�,

���T� = �0 exp� �

kBT
	exp�acFB�T�

kBT
	 . �7�

Equation �7� corresponds to adopting the primitive � time as
the dynamical prefactor �attempt time scale� for barrier hop-
ping, and detailed discussion of the approximations underly-

ing it has been given �14,15�. Briefly, Eq. �7� has not been
rigorously derived from Eqs. �1� and �2�, but rather encodes
the key elements of a high-temperature Arrhenius process
and the crossover to strongly activated non-Arrhenius relax-
ation below Tc. A MCT-like critical power-law type of tem-
perature dependence is often present over a narrow interme-
diate temperature region that corresponds to a few orders of
magnitude in relaxation time �1�. For simplicity, this aspect
has been ignored in Eq. �7� since our focus is the deeply
supercooled melt and the below Tg glass regimes where tra-
ditional mode-coupling effects are not relevant.

In reality there are short-range equilibrium correlations
between connected segments that have dynamic conse-
quences. To model this a temperature-independent, but
polymer-specific, cooperativity parameter, ac, is introduced
which leads to an effective barrier height of acFB. Physically,
ac corresponds to the number of dynamically correlated seg-
ments along the chain and its magnitude is determined by an
intramolecular correlation length. It is well known in poly-
mer physics that the “dynamical” segment length is not the
same as its analog that describes equilibrium single-chain
correlations �27,28�. The dynamical segment length is typi-
cally estimated from a measure of chain stiffness: Either the
Kuhn length lK=C�l, or persistence length �p= �C�+1�l /2
�18�, thereby yielding ac=C� or ac= �C�+1�2 /4C�, respec-
tively �15�. Given C��4–10, one finds ac�1–10. For
PMMA, since C��9 and l�0.15 nm, the equilibrium and
dynamic estimates of a segment length lie in the range of
�0.5–1.5 nm �15,16�. We note that our treatment of local
chain stiffness on the barrier hopping process is not a first
principles one, but rather is motivated by physical consider-
ations.

The nonuniversal local activation energy, �, is not a priori
known, and is coarse grained over at the segment level. It is
determined by adopting the recent proposition �29� of a
�nearly� universal “magic relaxation time” at the dynamical
crossover given by �0�Tc�10−7�1 s. This condition, plus
Eq. �3�, then yields �for �0�10−14 s� ��16.1�2.5�kBTc.
Equations �3�–�7� constitute the analytic theory for the �
time in the deeply supercooled regime. The practical experi-
mental criterion for a glass transition is ��Tg�=10x s where
x=2–4.

The theory focuses on a generic � time and does not
distinguish between dielectric, mechanical, light scattering or
other specific experimental probes of glassy relaxation. The
relaxation times extracted from distinct nondiffusive mea-
surements are very similar in magnitude and temperature de-
pendence �1�. Some insight concerning this issue is given in
Appendix B where the low wave-vector collective dynamic
structure factor is shown to be closely related to stress relax-
ation. Our polymer theory at present does not address
“dynamic heterogeneity” effects at the segmental scale that
result in strong decoupling of translational diffusion constant
and viscosity in the deeply supercooled regime of small mol-
ecule liquids �29,30�. We note that decoupling of macro-
scopic transport coefficients does not occur for polymers
since the macromolecular size is far larger than any dynamic
heterogeneity length scale associated with the fast �relative to
chain scale motions� segmental dynamics �31�.

Extensive applications of the melt theory to predict the
crossover temperature, Tg, dynamic fragility, temperature
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and pressure dependence of the relaxation time, shear modu-
lus and other aspects have been performed. They provide a
consistent picture of segmental dynamics based on a theory
with no singularities at nonzero temperature �14,15�.

B. Below the glass transition temperature

Below Tg the fundamental aspects of the theoretical ap-
proach are assumed to still apply �16�. The ultralocal fast
process is taken to remain in equilibrium, and hence the
fluctuation-dissipation relation involving the short-time fric-
tion constant in Eq. �1� still holds. In the potential energy
landscape �PEL� picture �32�, the fast process corresponds to
“intrabasin” harmoniclike vibrational motions and small
scale relaxation dynamics within a single inherent structure
or megabasin. However, structural degrees of freedom,
the relaxation of which define the slow � process, fall out
of equilibrium. As discussed theoretically �16� and experi-
mentally �33�, the statistical mechanical relationship
�−�C0�−1=S�q=0�=�kBT
 between the amplitude of density
fluctuations and isothermal compressibility no longer holds.
In our theory the key structural variable remains S0, which
must be interpreted as quantifying nanometer and longer
wavelength density fluctuations. In the PEL picture the
sub-Tg dynamics exhibits aging since the system is trapped
in higher energy inherent structures on the experimental time
scale �32�. The aging process corresponds to a slow approach
to equilibrium via the exploration of deeper states on the
landscape which lower potential energy.

The density fluctuations that enter S0, and hence the cou-
pling constant �, contain an equilibrated part associated with
the fast intrabasin dynamics. We model this contribution as
linear in temperature, which is an exact description for an
idealized harmonic crystal �34�. In the initial �preaging� out-
of-equilibrium state the diverse packing arrangement contri-
bution to S0 is taken to be frozen at a level that corresponds
to its equilibrated value at Tg. In the absence of physical
aging this contribution persists to zero Kelvin. Its magnitude
is modeled via a single material constant, b, defined as the
fraction of S0�T=Tg� unrelaxed at T=0. The physical aging
process then corresponds to the time evolution of this frozen
part back to its equilibrium value as defined via extrapolation
of the equilibrium S0�T� curve below Tg. The elementary
landscape arguments given above, and small angle scattering
measurements on many polymer glasses �33�, motivate a
simple additive description of the structural and vibrational
contributions �16�,

S0�T� � bS0�Tg� + �T/Tg��1 − b�S0�Tg� , �8�

where S0�T→0�
bS0�Tg�. Scattering measurements �33,35�
suggest the polymer-specific parameter b�0.5–0.75,
corresponding to the structural component comprising
�50% –75% of the total density fluctuation amplitude at Tg.
This range of the parameter b is consistent with the typical
drop by a factor of 2–3 of the isothermal compressibility at
the glass transition �33�.

Calculations of the � relaxation time for polymethyl-
methacrylate �PMMA� are shown in Fig. 1 based on the
identical parameters employed in previous work �16,17,36�.

In many cases measurements are performed rapidly
�“quenching”� and aging is minimal. Under this condition an
effective Arrhenius behavior is generically obtained �16� �in-
set of Fig. 1�, and our results are in good agreement with
many measurements �37�. The physical picture is the Arrhen-
ius temperature dependence is a consequence of the solid-
state-like thermal dependence of the amplitude of nanometer
and longer wavelength density fluctuations.

III. THEORY OF PHYSICAL AGING

As indicated in the main panel of Fig. 1, the aging process
corresponds to an evolution of the amplitude of density fluc-
tuations from its nonequilibrium t=0 value given by Eq. �8�
to the smaller long-time equilibrium value, S0,l. In the land-
scape picture the reduction of the inherent structure potential
energy and exploration of deeper states corresponds to a de-
crease of liquid disorder and hence a lower S0. The local fast
process is taken to be unaffected by physical aging. Such a
simplification is not exact, but generally quite accurate
�2,38�. The collective barrier and mean hopping time become
time dependent via S0�t� �39�.

We postulate a first-order kinetic model for the aging of
the dynamic order parameter

dS0�t�
dt

= −
S0�t� − S0,l

�����t��
. �9�

Here, S0,l is the equilibrated value of S0, and ��t� is the
quantity defined in Eq. �3� where the time dependence arises
solely from the aging of S0. Equation �9� corresponds to the
self-consistent idea that the time evolution of density fluc-
tuations is driven by segmental barrier hopping which itself
is determined by S0�t� via Eqs. �3�, �6�, and �8�. A statistical
mechanical motivation for Eq. �9� is given in Appendix B.
Many “first-order” kinetic aging equations have appeared in

FIG. 1. Main panel: Schematic of the aging process in terms of
S0. Normalized S0�T� as a function of temperature �Kelvin� for pa-
rameters relevant to PMMA �16� �A=0.693, B=1134 K, ��3

=0.92, ac=5, Tg=378 K, Tc=426 K, ���Tg�=100 s� and several
values of b in Eq. �4�. The inset shows the crossover to an apparent
Arrhenius behavior of the mean relaxation time below the glass
transition temperature.
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the literature �1,7,8�. However, they are generally based on
phenomenological, difficult to quantify concepts such as a
fictive temperature or “free volume.” We emphasize that Eq.
�9� involves the measurable amplitude of density fluctuations
and is devoid of adjustable parameters. The relationship of
our theory for glass relaxation and aging to the commonly
applied phenomenological model is discussed in Appendix
C.

The formal solution of Eq. �9� is

S0�t� = S0,l + �S0,g − S0,l�e−�0
t �dt�/���t���, �10�

where S0�t=0�=S0,g is the t=0 unaged value after a quench
described by Eq. �8�. Equation �10� is of an “effective time”
form, which can equivalently be written in a normalized
manner as

S0�t� − S0,l

S0�0� − S0,l
= e−�0

t �dt�/���t���. �11�

Equation �9� is a single relaxation time, time local descrip-
tion. Its temporal locality is consistent with the “local equi-
librium” idea underlying the effective free energy and sto-
chastic nonlinear Langevin equation �19� used to describe
the supercooled melt dynamics. Dynamic heterogeneity �29�
associated with a distribution of relaxation times is ignored.
However, �weak� nonexponential time evolution does occur
due to the time-dependent relaxation time. Given ��t�

���3S0

3/2�t��−1 and Eqs. �3� and �7�, Eq. �9� is a self-
consistent, highly nonlinear description of the aging dynam-
ics of S0�t� and relaxation time. Combining Eqs. �6�, �7�, and
�10� yields an explicit integral equation for the time-
dependent � relaxation time

���t� = �0�T�exp�cac����3�S0,l + �S0,g − S0,l�

	exp�− �
0

t

dt���
−1�t��	�3/2�−1

− �c��� . �12�

IV. RESULTS

We now apply the theory of Secs. II and III using the
same PMMA parameters as in previous work �17�. It is im-
portant to summarize how the material parameters are chosen
�16,17� and what is, and is not, adjusted. First, the glass
transition temperature is fixed by the kinetic criterion that the
� time at Tg equals 100 s. The cooperativity parameter is
chosen as ac=5 in order to reproduce a representative value
of Tg=378 K for PMMA. This value of cooperativity param-
eter lies in between the a priori estimates of ac=3 and 9
based on adopting the persistence or Kuhn length, respec-
tively, as a measure of dynamic stiffness �15,16�. Moreover,
ac=5 leads to a predicted dynamic fragility at Tg in excellent
agreement with experiment �16�. The bare Arrhenius activa-
tion energy, �, is fixed from the experimental dynamic cross-
over time and our theoretical computed Tc. In quantitative
applications to PMMA the dimensionless segmental density,
��3, is adjusted so that the theoretical Tc of Eq. �5� equals its

experimentally estimated analog �16�. It is important to em-
phasize that all these material parameters are determined
from the equilibrium melt state behavior of PMMA, and
none are varied as fit parameters in our study of physical
aging in the glass. Finally, in the glass state only one addi-
tional parameter enters: b in Eq. �8�, which quantifies the
amplitude of frozen density fluctuations. For PMMA this pa-
rameter is fixed at b=2 /3 as suggested by x-ray scattering
measurements �33,35�. In some plots we vary b in order to
illustrate the sensitivity of our results to this parameter.

A. Effective aging exponent for the relaxation time

Calculations of the time evolution of the structural vari-
able S0�t� at 8 K below Tg are shown in the inset of Fig. 2. As
experimentally observed for essentially all properties, the ba-
sic shape of the aging curve is sigmoidal �3�. Consistent with
measurements of the density, shear modulus, and enthalpy,
the intermediate time behavior is roughly logarithmic. The
shape shows a weak dependence on the fraction of frozen in
density fluctuation parameter, b.

The time evolution of the � time for various cooling
depths is also shown in Fig. 2 in a doubly normalized log-log
plot. The curves are again sigmoidal. The equilibration time
�plateau� increases extremely rapidly with cooling, and is
found to be roughly equal to the � time of the equilibrium
supercooled melt. A good power-law behavior, ���t�� t�, oc-
curs at intermediate times which depends strongly on tem-
perature and weakly on the parameter b. An apparent aging
exponent, �=d ln����t�� /d ln�t�, can be accurately extracted.

The inset of Fig. 3 shows the aging exponent initially
increases sharply with cooling below Tg, and then slowly
approaches unity from below. Note the almost complete in-
sensitivity of the temperature dependence of the aging expo-
nent on the parameter b. The time axis in Figs. 2 and 3 are
scaled by the initial relaxation time, and � is determined
under the assumption that all time scales are accessible.
However, as discussed previously �17�, only a limited time
window can be accessed in experiment which we suggest is

FIG. 2. Doubly normalized log-log plot of the relaxation time
for several values of b and different cooling depths. The evolution
of S0 at 370 K in the representation of Eq. �11� is shown in the
inset.
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the origin of the nonuniversal downturn of ��T� at low tem-
perature observed �2� in polymer glasses.

Mathematically, our predictions for the aging exponent
follow from the fact that �=d(�ac�FB���t��
−FB���0���) /d ln�t� is determined by the time evolution of
the barrier. The latter depends on the magnitude and time
dependence of S0�t� which at intermediate times decreases
roughly linearly with ln�t� �inset in Fig. 2� and
d�dS0�t� /d ln�t�� /dt�0. Using this condition, Eq. �9�, and
the definition of the aging exponent, one can show that �
=1− t /���t� evaluated in the intermediate time regime. Fig-
ure 3 demonstrates that this quantity is roughly constant in
this regime, i.e., t /���t� is nearly constant and decreases with
cooling resulting in a monotonic increase of �→1. More-
over, � is bounded from above by unity; although we do not
know of a fundamental reason, this must be the case in our
theory. The precise value of Tg−T where the exponent tends
to saturate depends on polymer and sometimes the method of
measurement �2�. However, the large majority of experi-
ments suggest the effective exponent does not exceed unity,
although a few exceptions apparently exist �2�.

B. Shift factor and time-aging time superposition

Many polymer aging experiments do not directly measure
the time-dependent relaxation time, but rather deduce it by
constructing master curves of creep �2� and stress relaxation
mechanical data �40� via a superposition procedure. The
measured shift factor, ate

�te , te
ref�
���te� /���te

ref�, reflects the
change of the characteristic relaxation time with aging time,
te, relative to a “reference” state which aged a time te

ref. To
mimic such an experiment we calculate the shear stress re-
laxation modulus, G�t�. In analogy with our treatment of
S0�t�, and motivated by Appendix B, a simple exponential-
like form is employed

G�te + t� = G��te�exp�− �
te

te+t

��
−1�t��dt�	 , �13�

where G��te� is the glassy modulus calculated using the
Green-Kubo formula �41,42�

G� =
kBT

60�2�
0

�

dq�q2 �

�q
ln S�q�	2

e−q2rL
2/3S�q�. �14�

The shear modulus is determined by the time-dependent den-
sity fluctuation amplitude and localization length rL.

The shear stress relaxation curves as a function of aging
time for different waiting times are shown in Fig. 4 on an
expanded scale as employed in experimental studies �2,40�.
By performing a horizontal shift �vertical shift is fixed by
G��te��, a good master curve can be constructed. We find �not
plotted� that the aging time dependence of the horizontal
shift factor, and the directly computed normalized relaxation
time, are in nearly perfect agreement.

C. Aging of cohesive energy, elastic modulus, and yield stress

It is well established that thermodynamic, relaxation, and
mechanical properties all change with time during physical
aging. Possible quantitative differences of their aging behav-
ior is of interest. Based on the Gaussian chain model, poly-
mer integral equation theory �22� for the site-site interchain
pair correlation function, g�r�, and a Yukawa form of the
attractive site-site potential, v�r�, it has been shown that the
cohesive energy density is �14�

Ucoh =
1

2
�2� dr��r�g�r� = − 2��2a3��1 +

�

a
�S0

12
	−1

,

�15�

where ��r�=−�ar−1e−r/a is the site-site interchain attraction
of range a and strength �. The effect of deformation on the
nonequilibrium free energy and barrier hopping process has
been discussed in detail �36,43�. The basic idea is that stress
results in a mechanical work-type contribution to the non-
equilibrium free energy in Eq. �2�, which increases the local-
ization length and reduces the barrier. The absolute yield
stress, �abs, is the minimum stress required to destroy the
barrier and transform Feff�r� to a monotonically decaying

FIG. 3. Time-dependent ratio t /���t� at several temperatures. A
plateau emerges at intermediate time. The inset shows the apparent
aging exponent as a function of cooling depth.

FIG. 4. Time-dependent stress relaxation modulus correspond-
ing to four different aging times �te� and T=350 K, b=0.5. The
master curve constructed by vertical and horizontal shifting is
shown in the upper right.
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delocalized form. In the absence of noise this corresponds to
a mechanically induced devitrification transition.

Figure 5 shows the normalized time evolution curves of
the long wavelength density fluctuation amplitude, elastic
modulus, cohesive energy, and absolute yield stress. The
relative changes are property specific. For example, at
360 K, S0 decreases by �10%, the modulus and absolute
yield stress increase by �75% –100%, and the cohesive en-
ergy changes by 1%. These differences reflect the fact that
distinct properties have differing sensitivities to the density
fluctuation amplitude. The shape of all aging curves are sig-
moidal with roughly logarithmic behavior at intermediate
times. The final and initial values differ more at lower tem-
perature.

Figure 6 presents the same calculations but in a normal-
ized format. All properties age quite similarly near Tg, and
almost collapse onto a master curve. But at lower tempera-
ture significant differences emerge at intermediate times with
S0 and cohesive energy varying more rapidly, and then more
slowly at longer times, compared to the mechanical proper-

ties. The absolute yield stress and modulus follow a uniform
logarithmic behavior at all intermediate times.

D. Fictive temperature

The fictive temperature Tf is traditionally defined as the
temperature at which the liquid structure is frozen when
cooling through the glass transition �9�. The inset of Fig. 7
shows the procedure for its determination in our approach,
which quantifies the extent of equilibration of the structural
�megabasin� contribution to density fluctuations. Specifically,
the nonequilibrium glass state has the same frozen long
wavelength density fluctuation as the corresponding equilib-
rium state at Tf �44�. Freshly quenched states have the same
fictive temperature, Tg. As aging progresses, Tf decreases
and becomes the real temperature in the long time limit.

The main panel of Fig. 7 presents fictive temperature cal-
culations starting from freshly quenched states of 370 K and
350 K for three values of the frozen density fluctuation pa-
rameter, b. Similar to the behavior of thermodynamic and
mechanical quantities, the fictive temperature varies in a
roughly logarithmic manner at intermediate times which de-
pends slightly on b.

E. Up versus down temperature jump experiments

A schematic of the up and down temperature jump experi-
ment is shown in Fig. 8. It is assumed that the intrabasin or
phononlike contribution to the long-wavelength density fluc-
tuation amplitude changes instantaneously with temperature
jump, and that Eq. �9� is available for describing the evolu-
tion of the frozen part of density fluctuation for the up-jump
experiment.

Figure 9 and its inset show the evolution of the � relax-
ation time and S0, respectively, for jump temperatures de-
picted in Fig. 8. In qualitative agreement with experiment
�4,5�, the strong asymmetry at fixed temperature jump mag-
nitude, �T, is evident. For the up-jump process there is an
extremely long initial plateau which extends further for
lower initial temperature and accounts for the longer equilib-

FIG. 5. Aging of the S0, elastic modulus G�, absolute yield
stress �abs, and cohesive energy Ucoh ��=a� at two temperatures
370 K and 360 K, and b=0.5.

FIG. 6. Normalized aging plot of the four quantities in Fig. 5: S0

�solid line�, G� �dashed line�, �abs �dotted line�, and Ucoh �dashed-
dotted line�.

FIG. 7. Main panel: Time evolution of the fictive temperature at
two temperatures and three b values. Inset: Schematic of the rule for
determination of the fictive temperature.
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rium time. However, the evolution rate �absolute slope of the
curve� in the following intermediate time regime is much
quicker than the down-jump process. It is significant to note
that the down-jump process follows an intermediate power-
law aging behavior, but the up-jump aging process does not,
as also found in experiments �3,19�.

V. ALTERNATIVE MODELS

As true of all practical models of physical aging, our non-
equilibrium evolution equation for the primary structural
variable has been postulated, not derived. A motivation for
its form is given in Appendix B. It seems worthwhile to
explore different ansatzes to test how sensitive our results are
to details of the dynamical description. We also consider at a
primitive level the possible role of non-Maxwell model-like,
or stretched exponential, description of relaxation.

A. Time local description

Recently Loidl and co-workers �45� proposed and applied
a simple ansatz for the physical aging of molecular glasses.

They demonstrated their model could reproduce a variety of
dielectric data quite well. In our notation their model, in the
Maxwell spirit, is given by

S0�t� = S0,l + �S0,g − S0,l�e−t/���t�. �16�

The time locality of Eq. �16� precludes describing memory
effects associated with the coupling of aging and other pro-
cesses. We have implemented this approach.

The aging of S0�t� �inset� and the relaxation time �main
panel� predicted by Eq. �16� are shown in Fig. 10 and con-
trasted with results based on Eq. �9�. There are no major
differences in the shapes of the curves. However, Eq. �16�
predicts a slightly slower aging process which can be quan-
tified by calculating the apparent aging exponent as shown in
Fig. 12 �solid versus dashed-dotted curves�. The aging expo-
nent for both models approach unity at low temperature.

B. Heterogeneity and nonexponential relaxation

The slow structural � relaxation is generally characterized
as nonexponential in time �1� and described by a stretched
exponential or Kohlrausch-Williams-Watts �KWW� function.
This form mimics, or is a consequence of, a distribution of
relaxation times due to dynamic heterogeneity. The latter has
not been explicitly taken into account in our approach. To
crudely address this issue, we investigate how the predictions
of our theory change if the underlying relaxation process is
described by a stretched exponential function. Since we as-
sume physical aging proceeds via the � relaxation process, it
is natural to incorporate nonexponential relaxation by gener-
alizing Eq. �10� to

S0�t� = S0,l + �S0,g − S0,l�e−��0
t �dt�/���t�����K, �17�

where �K is the KWW stretching exponent which is taken to
be temperature independent. Differentiating Eq. �17� with re-
spect to time yields the corresponding differential form

FIG. 8. Schematic of the up- and down-jump experiments and at
the temperatures studied.

FIG. 9. The aging of the � relaxation time �main panel� and
density fluctuation amplitude S0 �inset� corresponding to the up-
and down-jump processes in Fig. 8.

FIG. 10. Comparison of aging predictions of Eq. �9� and Eq.
�16�: Relaxation time �main panel� and density fluctuation ampli-
tude �inset�.
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dS0�t�
dt

= −
S0�t� − S0,l

���t�
�K��

0

t dt�

���t��	�K−1

. �18�

The integral term results in a new nonlocal in time feature
relative to Eq. �9� when �K�1. Specifically, the rate of aging
of the structural variable at time t depends on the entire aging
history of the relaxation time and hence S0�t� itself.

Model calculations of the aging behavior of the relaxation
time and S0 for various values of �K are given in Fig. 11.
Obviously, for smaller �K the equilibration time becomes
longer, and the intermediate time crossover is broader. Figure
12 shows the corresponding aging exponents. A significant
difference in the aging rate appears near Tg, but at low tem-
peratures all become more similar. A variety of experimental
results �46–50� on different polymer glasses that employ dis-

tinct measurement techniques are also shown in Fig. 12. It is
notable that a rough master curve exists for the experimental
data. This suggests the relaxation processes underlying the
aging of different physical quantities for chemically different
polymers are similar. It appears that the aging exponent pre-
dictions based on the simplest single relaxation time model
are in the best agreement with the limited set of observations
considered. We note that this comparison of theory with ex-
periment is not a fitting exercise, but has been performed
without adjusting any material parameters except the KWW
stretching exponent.

VI. COMPARISON TO EXPERIMENTS ON PMMA

At a qualitative and semiquantitative level our theory is
completely consistent with aging experiments on all polymer
glasses in the sense we predict a power-law growth of the
relaxation time at intermediate aging times with an apparent
exponent that increases with temperature, ultimately saturat-
ing at unity. The comparison with experiment in Fig. 12
demonstrates consistency between theory and experiment for
chemically different polymers and measurement methods,
and an insensitivity to the nonuniversal amplitude of frozen
density fluctuation parameter, b. For mechanical and thermo-
dynamiclike properties we predict logarithmic aging at inter-
mediate times, in agreement with experiment �2–4�. In this
section we further compare our calculations with measure-
ments on PMMA glass.

PMMA has a local � process which can sometimes inter-
fere with measurements of the � relaxation dynamics �2,3�,
and this aspect is not explicitly treated. Moreover, there exist
little experimental data for PMMA that systematically probes
the quantities studied in the present paper as a function of
temperature. Characterization data is often lacking, and dif-
ferent workers employ different aging protocols and PMMA
samples of varying degrees of polydispersity, glass tempera-
tures, and tacticity. For all these reasons, in this section we
pursue only a semiquantitative comparison of theory and ex-
periment for PMMA. Our modest, but nontrivial, goal is to
see whether our no adjustable parameter calculations for the
quantitative change of PMMA properties with aging time, at
different temperatures and over different aging periods, are
consistent with experiment. Numerical comparisons are
made with the following measurements: �a� Temperature de-
pendence of the segment relaxation time below Tg, �b� mag-
nitude of the shear modulus, �c� aging of the elastic shear
modulus, and �d� aging of a yield stress.

Besides the material issues, there is a further complication
in carrying out the comparisons. Mechanical and dielectric
experiments generally find stretched exponential relaxation
in the time or frequency domain which may be �weakly�
material and/or temperature dependent. At present our theory
does not predict in an ab initio manner nonexponential in
time, or non-Maxwell model frequency dependent, correla-
tion or response functions. Hence, we perform calculations
in both the literal Maxwell model limit corresponding to ex-
ponential relaxation �stretching exponent �K=1� and for the
simple KWW model of Sec. V using a typical �2,3,19,46�
glass value of �K=1 /3. When comparing to frequency-
dependent elastic modulus data we employ

FIG. 11. Aging curves of the relaxation time for three different
stretching exponents �K=1.0, 0.5, and 0.33 at a temperature of
365 K and b=0.67. The inset shows the corresponding density fluc-
tuation amplitude results.

FIG. 12. Temperature dependence of the relaxation time aging
exponents based on Eq. �12� for three different stretching expo-
nents, and the analog based on Eq. �16�. Data is given for mechani-
cal experiments �polycarbonate �circle �40�, solid star �41��, polyvi-
nylacetate �open star �42��, dielectric relaxation �solid square �43��,
and tracer diffusion �open square �44��.
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G���� = ��
0

�

dt sin��t�Gg��ta�e−�t/���ta���K, �19�

where ta is the aging time. Equation �19� is based on the fact
that the measurement time scale set by the inverse frequency,
�, is short compared with the aging dynamics time scale. All
other parameters of the theory are fixed as explained at the
beginning of Sec. IV.

As shown in Fig. 1, our theory is characterized by an
Arrenhius temperature dependence of the � time in the glass
�16�. Quantitative predictions for the change in the apparent
activation energy as Tg is crossed have been made. The fac-
tor by which the activation energy changes depends on the
frozen density fluctuation parameter, b. X-ray scattering
measurements suggest b�0.5–0.67 for PMMA glass
�33,35�. Stress relaxation measurements �51� of the � time of
PMMA do find Arrenhius behavior below Tg, with �� in-
creasing by a factor of �10 000 as temperature is lowered
from Tg to Tg−50. Our corresponding predictions are that the
� time should grow by a factor of �2000 and 32 000 for b
=0.67 and 0.5, respectively. Hence, the theoretical results
bracket the experimental observation based on a value of b
consistent with independent measurements.

The linear elastic shear modulus of PMMA measured �52�
immediately after a quench to 35 K below Tg is G�
�890 MPa at a probing frequency of �=1 Hz. Using Eq.
�14�, we predict G�=890 MPa if the PMMA segment length
is taken to be 0.77 nm. The latter value falls in between the
a priori computed values of the persistence and Kuhn
lengths. If the segment length is increased to 1 nm, G� is a
factor of 2 smaller than experiment. Elsewhere �53� we have
shown the theory quantitatively predicts the absolute magni-
tude and temperature dependence of Young’s modulus of
PMMA over a wide range of temperatures based on a seg-
ment length in the a priori estimated window.

We are unaware of experimental data for the aging of S0
of PMMA glass. However, since S0 quantifies density fluc-
tuations, one might expect its aging dynamics is similar to
that of the mean density or volume. As a representative ex-
ample of the latter, experiments for a quench of 5 K below Tg
find that the volume takes �100 000 s to equilibrate �52�.
This time can be compared to our corresponding calculation
that S0 takes 10 000 or 100 000 seconds to equilibrate if �K
=1 or 1 /3, respectively.

We now compare our results for the aging of the shear
modulus to two different experimental studies of PMMA. �a�
For the first experimental study �52�, after waiting 405 s, the
sample was further aged to ta�30 h. For a quench of 5 K
below Tg, the shear modulus grew by a factor of 1.35 �1.10�
over this aging time interval when measured at a frequency
of �=0.1 �10� Hz. For a stretching exponent of �K=1 /3, we
calculate that G� grows by a factor of 1.17 �0.1 Hz� and 1.1
�10 Hz�. For the Maxwell model ��K=1�, a factor of 1.12
growth is predicted for both frequencies. The same experi-
ment was done �55� for an 8 K quench at 1 Hz where G�
increased by a factor of �1.2. Our theory predicts a factor of
�1.26 ��K=1� and 1.20 ��K=1 /3�. �b� A different experi-
ment �54� measured the shear modulus of PMMA at frequen-
cies of 0.1 and 100 Hz after a quench of 15 K over an aging

time period from 30 min to 3825 min. G� was found to in-
crease by a factor of 1.25 �0.1 Hz� and 1.14 �100 Hz�. Our
calculations based on �K=1 /3 yield an increase of the modu-
lus by a factor of �1.24 �0.1 Hz� and 1.20 �100 Hz�, while
the enhancement is a factor �1.31 for the �K=1 Maxwell
model.

Finally, our calculations of the aging of the absolute yield
stress can be qualitatively compared to measurements of the
dynamic yield stress of PMMA glass probed in a constant
strain rate mechanical experiment �55�. After a 26 K quench
the yield stress was found to increase by a factor of �1.3
over the aging time period of 103.5 to 107 s. Our theory pre-
dicts the absolute yield stress grows by a factor of 1.29
��K=1 /3� or 1.43 ��K=1�.

Overall, it appears our calculations based on the stretched
exponential decay are quite accurate for the aging of multiple
properties of PMMA glass. Relaxation stretching is needed
to account for the frequency dependence of the rate of aging.
This is consistent with the mechanical experiments which
always find stretched exponential decay. Of course, at the
moment we do not have a first principles theory for the pre-
cise value of �K.

VII. DISCUSSION

We have proposed and applied a segmental scale theory
for the physical aging of polymer glasses. The underlying
idea is that the translational dynamics of nanometer-sized
statistical segments controls the aging of thermodynamic, re-
laxational, and mechanical properties. Recent computer
simulations have provided strong support for this premise,
and find that the aging of collective mechanical properties is
indeed controlled by segmental displacements on small
length scales �13�. The key structural variable or dynamical
order parameter in our theory is the amplitude of density
fluctuations on the nanometer length scale. This quantity is
experimentally measurable as the amplitude of the collective
density fluctuation structure factor, S�q�, which attains a con-
stant value S0 for wave vectors smaller than of order an
inverse nanometer or segment length �22�. The quantity S0
should not be confused with the rather fuzzy concept of “free
volume.” In the glass S0 has a relatively small equilibrated
contribution modeled per a harmonic crystal. The larger con-
tribution is due to the many amorphous packing arrange-
ments �inherent structures� which fall out of equilibrium be-
low Tg. A first-order kinetic equation with a time varying rate
has been postulated for its temporal evolution which is self-
consistently and nonlinearly coupled with the segmental re-
laxation time. Almost all of the parameters of the theory are
physically well-defined and potentially measurable, in con-
trast with most phenomenological approaches. This renders
the theory significantly more predictive �and potentially fal-
sifiable� than the classic model summarized in Appendix C.
However, the values of the material-specific local cooperat-
ivity parameter, ac, segmental density, ��3, and high-
temperature activation energy, �, are not determined in a
fully a priori manner. Rather, they are set in the present work
by requiring the theory reproduces the experimental cross-
over and kinetic glass temperatures, Tc and Tg, and the �
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time at the dynamic crossover, in the equilibrium melt. These
parameters are held fixed and not treated as fit parameters in
the sub-Tg aging glass state that is the focus of the present
work.

The theory has been applied to study the aging of the �
relaxation time, stress relaxation modulus, amplitude of den-
sity fluctuations, cohesive energy, absolute yield stress, fic-
tive temperature, and shear modulus of PMMA for different
temperatures. Temperature-dependent logarithmic and effec-
tive power-law aging is predicted at intermediate times. The
material specificity, as quantified by the amplitude of frozen
density fluctuations �parameter b�, is small. Strongly asym-
metric response is predicted for up and down temperature
jump experiments. Quantitative comparisons with PMMA
aging experiments suggest the theory is reasonably accurate.
New time resolved x-ray scattering experiments that measure
the aging of S0�t� would be exceptionally valuable to test the
basic elements of the theory.

As formulated, our simple theory of physical aging has
clear limitations. For example, the classic “memory effect”
�5,18� cannot be addressed. Whether our ideas can provide
insight to the “expansion gap” or “� paradox” effect �4,5� in
polymer glasses remains to be seen. The behavior at ultralow
temperature where the bare process �� relaxations� may
“freeze out” has not been treated. We have also not addressed
from first principles local dynamic heterogeneity effects
which underlie the stretched nonexponential nature of the �
relaxation. On the other hand, the technical and conceptual
simplicity of the theory provides the opportunities for ex-
tending it to treat fascinating nonequilibrium glassy phenom-
ena of high scientific and technological importance. Efforts
are underway to generalize the theory to treat “rejuvenation”
effects �2,3�, i.e., the coupling of aging and applied stress,
and “strain softening” in mechanical tests �56�, i.e., the ex-
istence of a local maximum in a stress-strain curve �practical
yield point� which also is believed to reflect the coupling of
physical aging and deformation induced structural disorder-
ing.

Finally, we note that only a “generic” � relaxation process
has been considered. Relaxation times and time correlation
functions for specific experimental probes such as NMR,
stress relaxation, and dielectric relaxation have not been
computed. However, on the local segment scale all of these
processes are widely believed to reflect a common segmental
dynamics �1,19�. However, as Tg is approached from above
there is a strong decoupling in most polymer melts of the
local segmental dynamics and the macromolecular scale dy-
namics as probed, for example, by relaxation of the chain
end-to-end vector �57�. This distinctly polymeric phenom-
enon remains a mystery that is not addressed by our present
approach.
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APPENDIX A: SEGMENTAL COARSE GRAINING AND
DENSITY FLUCTUATIONS

The mapping of a real polymer chain to the segment level,
and its implications for the collective density fluctuation
structure factor, S�q�, has been discussed in the context of
equilibrium polymer reference interaction site model
�PRISM� integral equation theory �22�. A qualitative argu-
ment for using simple analytic forms for C�q� and S�q� dis-
cussed in Sec. II in the dynamical theory has been given
�14�. However, a more precise discussion has not been pre-
sented, and this appendix addresses this issue.

The collective static structure factor is related to the
single chain structure factor, ��q�, and the intermolecular
site-site direct correlation function �effective potential�,
C�q�, via the equation �22�

S�q� =
1

�−1�q� − �C�q�
. �A1�

The real space C�r� is nonzero only on the length scale of the
intermolecular interaction, which is well below a nanometer
�22�. Hence C�q��C�q=0� for inverse wave vectors larger
than of order a nanometer. The atomistic level S�q� of poly-
mer melts does have the generic form of being nearly con-
stant S�q��S�q=0�=S0 over length scales of a nanometer
and beyond �22�. Since the segment �or Kuhn� length, �, is
of order a nanometer, S�q� is nearly constant on the segmen-
tal scale addressed by the slow dynamics theory. Of course,
at higher wave vectors S�q� has the usual amorphous halo
correlation peak due to an oscillatory C�q�, and S�q→��
=1 due to the single site self-scattering term, ��q→��=1.
But our slow segmental dynamics theory is not meant to
describe the �theoretically intractable� atomistic scale which,
in the spirit of space-time coarse graining, is treated via the
very local, fast dynamic process encoded in the “bare”
Arrhenius relaxation time �0�T� which describes the � relax-
ation above the crossover temperature Tc. Now, for long
Gaussian chains �−1�q�= �q��2 /12+N−1 is a good analytic
representation on the segmental scale �22�. Hence, for slow
dynamics we argue that the relevant and internally consistent
S�q� is the simplified Lorentzian form.

S�q� =
1

�q2�2/12� − �C0
�A2�

− �C0 = 1/S0. �A3�

It is crucial to appreciate that the use of Eq. �A2� and
C�q��C0 is not meant to literally describe polymer melt
structure on atomistic scales. For example, a Lorentzian S�q�
does not capture the amorphous halo feature, nor the concave
upwards curvature present in an atomistic description as
wave vector increases sufficiently above zero �22�. This
should not be viewed as a “problem,” but rather is a natural
consequence of the coarse-graining approach. Moreover, it is
important to point out that computer simulation, PRISM
theory, and x-ray scattering experiments all reveal that for
polymer melts �58–60� S�q� is very nearly flat �S�q��S0� for
qq* /2��2−3� /d, where q* is the location of the amor-
phous halo peak and d is an atomic or functional group di-
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ameter �typically �4–6 Å�. Hence, S�q� is nearly flat on the
�nm� Kuhn length scale of interest for the dynamical theory.
For example, for dense melts of freely jointed chains PRISM
theory predicts �58� �at high packing fractions which produce
realistic dimenionless compressibilities� S�q� is constant for
qd2–3. Scattering experiments, atomistic PRISM theory,
and/or molecular dynamics simulations also find S�q� is es-
sentially constant when qq* /2 for both vinyl polyolefin
�59� and dialkylsiloxane �60� polymer melts.

To provide further motivation for the zeroth-order sensi-
bility of the adopted space-time coarse-graining approach,
we analytically establish and contrast what wave-vector den-
sity fluctuations dominate the nonequilibrium free energy of
Eq. �2� at the segment and atomistic levels of description.
Caging is associated with the interchain segment-segment
force contribution to Feff�r� given by

�Feff
int�r� � �

0

�

dqV�q�e−q2r2�1+S−1�q��/6, �A4�

where the “vertex,” V�q�, quantifies the Fourier-resolved
mean-square interchain force on a tagged segment �23,24�,

V�q� = q2C2�q��S�q��1 + S−1�q��−1. �A5�

The vertex grows quadratically at small wave vectors at both
levels of description. The key question is the high q behav-
ior. Using Eqs. �A2� and �A3� in �A5� yields at the segment
level

lim
q→�

V�q� � q2�C0
2q−4 � q−2. �A6�

The vertex decays at large wave vector as q−2. Hence, from
Eqs. �A2� and �A5� one sees the vertex is a nonmonotonic
function of wave vector with a maximum at q*��S0

−1/2.
From analytic PRISM theory the Gaussian polymer melt
density screening length is �22� �p /��S0

1/2. Hence, “caging”
in the �lightly� coarse-grained segment level theory is asso-
ciated with “local” force correlations, as also true in the ato-
mistic MCT �23,41� and barrier hopping �23� approaches.

Now, at the level of interaction sites of nonzero hard-core
diameter �d� it is well known that both C�q� and S�q� are
oscillatory �22� due to the excluded volume constraints.
However, the vertex amplitude �envelope of oscillatory func-
tion� follows from the known high wave vector scalings
�22,23�, C�q��q−2 and S�q�→1. These limits apply for in-
verse wave vectors smaller than d corresponding to length
scales well below a nanometer. Using these limiting laws,
one immediately concludes that the vertex of Eq. �A5� at an
atomisticlike level of description goes to zero as q−2 in the
high wave-vector limit, the identical scaling form as at the
segment level description �Eq. �A6��; moreover, V�q� peaks
at a wave vector of order 1 /d. Hence, one can draw the
important conclusion that the central physical quantity of the
dynamical theory, V�q�, displays the same qualitative wave-
vector dependence at the segment and atomistic levels. This
provides additional support for the space-time coarse-
graining ideas that underlie the glassy dynamics theory and
its structural embodiment in Eqs. �A2� and �A3�.

Finally, as a quantitative illustration of how the coarse
grained and microscopic level descriptions compare we
present in Fig. 13 calculations of the vertex as defined in Eq.
�A5�. The numerical PRISM theory �22� results are for the
semiflexible freely jointed chain �FJC� model characterized
by hard-core interaction sites of diameter d, a rigid bond
length �persistence length� of L=4d /3, a large degree of po-
lymerization of N=104, and two values of the space-filling
site packing fraction, �=��d3 /6. The latter are chosen to
reproduce the typical magnitude of S�q=0� in deeply super-
cooled polymer melts �14�, S0=0.1 and 0.2. The FJC melt
structure factor has all the �non-Lorentzian� characteristics of
the S�q� of atomistic models �22�: Flat at small q, concave
upwards as wave vector increases, a wide angle peak at q
�2� /d, and S�q�→1 at large wave vector.

The calculated vertices are shown in dimensionless form
as V�Q� /L, where Q=qL. The numerical FJC melt results are
oscillatory due to packing effects on the site diameter scale,
with a maximum at Q�3–4 that grows in intensity with
packing fraction �smaller S0�. The envelope of this vertex
follows the limiting analytic laws at high and low wave vec-
tors discussed above. The philosophy of our mapping to the
coarse-grained segment scale is to match the q=0 value of
S�q� of real polymer liquids. Hence, the analytic dimension-
less vertices are computed for the same two values of S0
=0.1 and 0.2. The relationship of the statistical segment
length, �, to the microscopic lengths of the FJC model is not
uniquely determined. We have argued �14–16� it should lie
between the persistence length �L� and Kuhn length �2L�.
The results shown in Fig. 13 are based on �=2L; qualita-
tively identical results are found if �=L is adopted. The ana-
lytic vertex does not, of course, display oscillations. How-
ever, its form does reproduce quite well the location of the
peak and envelope of the numerical vertices with an overall
amplitude difference of a factor of 3–4. We emphasize again
that there is no reason quantitative agreement between the
analytic and numerical vertex should apply, especially since
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FIG. 13. �Color online� Dimensionless vertex as a function of
dimensionless wave vector for the analytic coarse-grained Gaussian
segment model �solid� and the more realistic freely jointed chain
model �dashed� for S0=0.1 �larger vertex� and 0.2 �smaller vertex�.
The analytic result is divided by a factor of 4 for illustrative
purposes.
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the philosophy of the segmental coarse graining is to develop
a dynamical theory for the slow � relaxation process, not the
ultralocal fast process which is treated as input via the relax-
ation time �0�T�.

APPENDIX B: COLLECTIVE DENSITY FLUCTUATIONS
AND MECHANICAL RELAXATION

Our theory of physical aging has not been rigorously de-
rived. However, it perhaps can be heuristically motivated in
an Onsager regression spirit �61� as empirically extended to
the nonstationary situation. Specifically, based on well-
defined approximations we show the structure of Eq. �9� for
the nonequilibrium S0�t� is similar to its equilibrium analog.
A connection between the relaxation of density fluctuations
and stress is also discussed.

The formal analysis of the normalized collective density
fluctuation time correlation function, Fc�q , t�
S�q , t� /S�q�

����q , t����−q ,0�� / �����q��2�, in the strongly overdamped
situation relevant to highly viscous liquids has been recently
presented �42�. Adopting collective density fluctuations as
the slow variable, and enforcing total momentum conserva-
tion �sum of all intermolecular forces is zero�, yields in
Laplace transform space �42�,

Fc�q,s� =
1

s +
q2

S�q���−1���q,s�

, �B1�

where the wave-vector-dependent longitudinal dynamic vis-
cosity is given by

���q,t� = ��−1��
j,l

eiqzj�0�f j
z�0�e−iqzl�t�f l

z�t�� . �B2�

The sum is over all particles, and zj�t�f j
z�t� is the z compo-

nent of microscopic longitudinal stress variable associated
with particle j at time t. Expanding ���q ,z� through lowest
order in wave-vector results in a q-independent form

Fc�q� � 1,s� =
1

s +
1

S0��−1M��s�

, �B3�

M��s� = ��−1�
0

�

dte−st��
j,l

zj�0�f j
z�0�zl�t�f l

z�t�� . �B4�

This result is expected to be valid on all length scales where
S�q� is �nearly� flat, which for polymers includes the seg-
mental scale. This is the reason dynamic light scattering can
be employed to probe local glassy dynamics �1,33�. Equation
�B4� defines a longitudinal stress relaxation modulus which
to a good approximation �42� is proportional to its shear
stress analog M��s��3G�s�. Moreover, the bulk and longitu-
dinal moduli are related as �62�:

S0��−1M� =
M�

KB
�

3G�

KB
� 1. �B5�

Hence, the relaxation of slow, relatively long wavelength
density fluctuations are controlled by a mechanical modulus.

The density field is an apparent nonconserved variable due
to strong viscoelastic coupling �42,63�. Combining Eqs.
�B3�–�B5�, transforming back to the time domain, and mak-
ing a Markov approximation corresponding to assuming
stress relaxation is �quantitatively� fast compared to density
fluctuation dynamics, yields

dFc�q = 0,t�
dt

= −
Fc�q = 0,t�
�M�S�q��

, �B6�

where the characteristic relaxation time, which is a func-
tional of the structure factor, is

�M 
 �
0

�

dt
M��t�
M��0�

. �B7�

Equation �B6� corresponds to a simple exponential decay of
the long-wavelength equilibrium time correlations of density
fluctuations.

Our aging theory is for the nonequilibrium �nonstation-
ary� evolution of the equal time amplitude of density fluc-
tuations which we write as S0�t�. Its long-time limit is non-
zero, in contrast to the equilibrium case where Fc�q=0, t
→��=0. The Onsager regression idea states that in linear
response the nonequilibrium time evolution of density fluc-
tuations is the same as its spontaneous equilibrium analog
�61�. Empirical extension of this idea to the strongly non-
equilibrium aging regime suggests an equation of motion for
the quantity �S0�t�
S0�t�−S0�t→��
S0�t�−S0,� given by

d

dt

�S0�t�
�S0�0�

� −
1

�M�S0�t��
�S0�t�
�S0�0�

. �B8�

Equation �B8� is equivalent to Eq. �9� based on the identifi-
cation �M →��. The “functional” dependence of the relax-
ation time becomes explicit and time dependent. Of course,
the Markov approximation is not exact. However, it is not
expected to incur major errors given all glassy relaxation
processes are characterized by similar time scales due to an
underlying common molecular process.

APPENDIX C: COMPARISON TO CLASSICAL
PHENOMENOLOGICAL AGING THEORY

The classic phenomenological approach to the physical
aging of any property, p, consists of three equations �7,8�.
The normalized time evolution is given by an effective time
form

��t� 

p�t� − p�

p�0� − p�

= exp�− ��
0

t

dt���
−1�t��	�K� , �C1�

where the stretching exponent is taken from quiescent mea-
surements, and typically assumed to be independent of tem-
perature �thermorheological simplicity�. The relaxation time
is often chosen to be of a modified Arrhenius form

���t� = �0 exp�x
EA

kBT
+ �1 − x�

EA

kBTf�t�
	 , �C2�

where x is an empirical “nonlinearity parameter” �0x
1� which quantifies the equilibrated portion of an activa-
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tion energy, and Tf is the “fictive temperature” which reflects
the partially frozen glass structure. Formally it equals the
temperature at which the property p, when extrapolated
along the glass line, intersects the analogous equilibrium
line. The fictive temperature plays the role of the fundamen-
tal structural variable, and is assumed to evolve in time as
�7,8�

Tf�t� = T + �T1 − T���t� , �C3�

where Tf�0�=T1 is the quench temperature, and T is the final
equilibrium temperature. Various theories differ according to
whether the key variable is assumed to be free volume, en-
thalpy, configurational entropy, or some other quantity. Equa-
tions �C1�–�C3� are coupled, self-consistent and nonlinear
equations for the relaxation function, � time and fictive tem-

perature. They are applied to experimental data by fitting
four parameters: �K, �0, x, and EA.

Our approach has similar elements. For example, the ef-
fective time idea in Eqs. �C1� and Eq. �11� based on an �
time that depends on an aging “structural variable,” a relax-
ation time with an Arrhenius part and a �almost� frozen struc-
tural part, and a common origin for the dynamics of the
structural variable and � relaxation time. However, there are
multiple fundamental differences. These include �i� our
structural variable is the microscopically well-defined and
experimentally measurable dimensionless amplitude of den-
sity fluctuations, �ii� the concept of a fictive temperature is
not literally employed, �iii� the � relaxation time is not a
priori assumed to be Arrhenius, �iv� the crucial and adjust-
able nonlinearity parameter, x, does not enter, and �v� our
approach is not characterized by multiple parameters that
must be determined by fitting of physical aging data.

�1� C. A. Angell, K. L. Ngai, G. B. McKenna, P. F. McMillan, and
S. W. Martin, J. Appl. Phys. 88, 3113 �2000�; K. L. Ngai, J.
Non-Cryst. Solids 275, 7 �2000�.

�2� L. C. E. Struick, Physical Aging in Amorphous Polymers and
Other Materials �Elsevier, Amsterdam, 1978�.

�3� G. B. McKenna, J. Phys.: Condens. Matter 15, S737 �2003�.
�4� A. J. Kovacs, Fortschr. Hochpolym.-Forsch. 3, 394 �1964�.
�5� S. Kolla and S. L. Simon, Polymer 46, 733 �2005�; G. B.

McKenna, M. G. Vangel, A. L. Rukhin, S. D. Leigh, B. Lotz,
and C. Straupe, ibid. 40, 5183 �1999�.

�6� P. Badrinarayanan and S. L. Simon, Polymer 48, 1464 �2007�;
I. Echeverria, P. L. Kolek, D. J. Plazek, and S. L. Simon, J.
Non-Cryst. Solids 324, 242 �2003�.

�7� G. W. Scherer, Relaxation in Glass and Composites �Wiley,
New York, 1986�.

�8� S. Brawer, Relaxation in Viscous Liquids �American Ceramic
Society, Columbus, Ohio, 1985�.

�9� A. Q. Tool, J. Am. Chem. Soc. 37, 73 �1946�; O. S. Narayan-
swamy, ibid. 54, 491 �1971�; C. T. Moynihan, P. B. Macedo,
C. J. Montrose, P. K. Gupta, M. A. DeBolt, and J. F. Dill, Ann.
N.Y. Acad. Sci. 279, 15 �1976�.

�10� V. Lubchenko and P. G. Wolynes, J. Chem. Phys. 121, 2852
�2004�.

�11� V. Luchenko and P. G. Wolynes, Annu. Rev. Phys. Chem. 58,
235 �2007�.

�12� J. Rottler and M. O. Robbins, Phys. Rev. Lett. 95, 225504
�2005�.

�13� M. Warren and J. Rottler, Phys. Rev. E 76, 031802 �2007�.
�14� K. S. Schweizer and E. J. Saltzman, J. Chem. Phys. 121, 1984

�2004�; E. J. Saltzman and K. S. Schweizer, ibid. 121, 2001
�2004�.

�15� E. J. Saltzman and K. S. Schweizer, J. Phys.: Condens. Matter
19, 205123 �2007�.

�16� K. Chen and K. S. Schweizer, J. Chem. Phys. 126, 014904
�2007�.

�17� K. Chen and K. S. Schweizer, Phys. Rev. Lett. 98, 167802
�2007�.

�18� M. Rubinstein and R. H. Colby, Polymer Physics �Oxford
Press, Oxford, 2003�.

�19� G. B. McKenna, in Comprehensive Polymer Science, edited by
C. Booth and C. Price �Pergamon, Oxford, 1989�, Vol. 2, p.
311.

�20� K. S. Schweizer, J. Chem. Phys. 123, 244501 �2005�.
�21� N. Goldenfeld, Lectures on Phase Transitions and the Renor-

malization Group �Addison-Wesley, New York, 1994�.
�22� K. S. Schweizer and J. G. Curro, Adv. Chem. Phys. 98, 1

�1997�.
�23� K. S. Schweizer and G. Yatsenko, J. Chem. Phys. 127, 164505

�2007�.
�24� G. Yatsenko and K. S. Schweizer, Phys. Rev. E 76, 041506

�2007�.
�25� T. R. Kirkpatrick and P. G. Wolynes, Phys. Rev. A 35, 3072

�1987�.
�26� K. S. Schweizer and E. J. Saltzman, J. Chem. Phys. 119, 1181

�2003�.
�27� T. Inoue and K. Osaki, Macromolecules 29, 1595 �1996�.
�28� T. P. Lodge and T. C. B. MacLeish, Macromolecules 33, 5278

�2000�.
�29� V. N. Novikov and A. P. Sokolov, Phys. Rev. E 67, 031507

�2003�.
�30� M. D. Ediger, Annu. Rev. Phys. Chem. 51, 99 �2000�; R.

Richert, J. Phys.: Condens. Matter 14, R703 �2002�; S. F.
Swallen, P. A. Bonvallet, R. J. McMahon, and M. D. Ediger,
Phys. Rev. Lett. 90, 015901 �2003�.

�31� O. Urakawa, S. F. Swallen, M. D. Ediger, and E. D. von Meer-
wall, Macromolecules 37, 1558 �2004�.

�32� F. H. Stillinger and P. G. Debennedetti, Nature �London� 410,
259 �2001�; F. H. Stillinger, P. G. Debennedetti, and S. Sastry,
J. Chem. Phys. 109, 3983 �1998�; W. Kob, F. Sciortino, and P.
Tartaglia, Europhys. Lett. 49, 590 �2000�.

�33� See Ref. �16� for a detailed discussion of the x-ray scattering
measurements of S�q=0� for polymer glasses and a list of
original references. For polymer compressibility data near the
glass transition see G. Floudas, T. Pakula, M. Stamm, and E.
W. Fischer, Macromolecules 26, 1671 �1993�. For a review of
dynamic light scattering studies of polymer glasses see G. D.
Patterson and A. Munoz-Rojas, Annu. Rev. Phys. Chem. 38,
191 �1987�.

KANG CHEN AND KENNETH S. SCHWEIZER PHYSICAL REVIEW E 78, 031802 �2008�

031802-14



�34� N. Ashcroft and D. Mermin, Solid State Physics �Holt, Rine-
hart, and Winston, New York, 1976�.

�35� L. David, G. Vigier, S. Etienne, A. Faivre, C. L. Soles, and A.
F. Yee, J. Non-Cryst. Solids 235-237, 383 �1998�.

�36� K. Chen and K. S. Schweizer, Europhys. Lett. 79, 26006
�2007�.

�37� See Ref. �16� for comparison of our theory with measurements
of the temperature dependence of the segmental relaxation
time below Tg.

�38� M. L. Cerrada and G. B. McKenna, Macromolecules 33, 3065
�2000�, and references therein.

�39� The liquid density also changes with aging time but this is
much smaller effect than S0 and is not taken into account.

�40� P. A. O’Connell and G. B. McKenna, Polym. Eng. Sci. 37,
1485 �1997�.

�41� W. Gotze and L. Sjogren, Rep. Prog. Phys. 55, 241 �1992�.
�42� K. S. Schweizer and E. J. Saltzman, J. Phys. Chem. B 108,

19729 �2004�.
�43� V. Kobelev and K. S. Schweizer, Phys. Rev. E 71, 021401

�2005�.
�44� The determination of the fictive temperature is not unique. One

typical approach is based on the measurement of specific vol-
ume V−V�= �Tf −T���l−�g�, where V and V� stand for the
actual and equilibrium specific volume, respectively, and �l

��g� is the volume expansion coefficients of the liquid �glass�.
An alternative choice assumes ��Tf�=�eq�T� where ��Tf� refers
to the characteristic time achieved by thermally stimulated
modulus relaxation measurement �see, for example, H. Wagner
and R. Richert, Polymer 38, 5801 �1997��.

�45� P. Lunkenheimer, R. Wehn, U. Schneider, and A. Loidl, Phys.
Rev. Lett. 95, 055702 �2005�.

�46� P. A. O’Connell and G. B. McKenna, J. Chem. Phys. 110,
11054 �1999�.

�47� J. M. Hutchinson, S. Smith, B. Horne, and G. M. Gourlay,
Macromolecules 32, 5046 �1999�.

�48� M. Delin, R. Rychwalski, J. Kubat, C. Klason, and J. M.
Hutchinson, Polym. Eng. Sci. 36, 2955 �1996�.

�49� A. Alegria, L. Goitiandia, I. Telleria, and J. Colmenero, Mac-
romolecules 30, 3881 �1997�.

�50� C. T. Thurau and M. D. Ediger, J. Chem. Phys. 116, 9089
�2002�.

�51� K. C. Rusch, J. Macromol. Sci., Phys. B2, 179 �1968�.
�52� J. Vernel, R. w. Rychwalski, V. Pelisek, P. Saha, M. Schmidt,

and F. H. J. Mauer, Thermochim. Acta 342, 115 �1999�.
�53� K. Chen and K. S. Schweizer, Macromolecules 41, 5908

�2008�.
�54� L. Guerdoux, R. A. Duckett, and D. Froelich, Polymer 25,

1392 �1984�.
�55� Y. Nanzai, A. Miwa, and S. Z. Cui, Polym. J. �Tokyo, Jpn.� 32,

51 �2000�.
�56� H. E. H. Meijer and L. E. Govaert, Prog. Polym. Sci. 30, 915

�2005�.
�57� K. Ding and A. P. Sokolov, Macromolecules 39, 3322 �2006�.
�58� K. S. Schweizer and J. G. Curro, Macromolecules 21, 3082

�1988�.
�59� H. Li, J. G. Curro, D. T. Wu, and A. Habenschuss, Macromol-

ecules 41, 2694 �2008�.
�60� A. Habenschuss, M. Tsige, J. G. Curro, G. S. Grest, and S. K.

Nath, Macromolecules 40, 7036 �2007�.
�61� L. Onsager, Phys. Rev. 37, 405 �1931�; 38, 2265 �1931�.
�62� K. S. Schweizer, J. Chem. Phys. 127, 164506 �2007�.
�63� J. C. Dyre, Phys. Rev. E 76, 041508 �2007�.

THEORY OF PHYSICAL AGING IN POLYMER GLASSES PHYSICAL REVIEW E 78, 031802 �2008�

031802-15


